dafabet黄金手机版 - 歡迎您!

职称:教授

电话:010-62794531

E-mail address:caoby@tsinghua.edu.cn

个人简介

清华大学dafabet黄金手机版党委书记,教授。2011年入选教育部新世纪优秀人才支持计划,2013年获国家自然科学优秀青年基金,2020年入选国际先进材料学会Fellow。曾获中国工程热物理学会吴仲华优秀青年学者奖(2014)、教育部自然科学一等奖(2018)、国际先进材料学会IAAM Medal(2019)等荣誉。现任中国工程热物理学会传热传质青年委员会主任、中国复合材料学会导热复合材料专业委员会副主任、亚洲热科学与工程联合会执行理事、中国工程热物理学会理事、中国热管理产业技术创新战略联盟理事、中国工程热物理学会传热传质专业委员会委员、中国航空学会燃烧与传热专业委员会委员、中国宇航学会空间能源专业委员会委员、北京2022冬季奥运会专家委员会指导专家。主要研究领域为微纳尺度传热、热功能材料和先进热管理技术,主持国家自然科学基金、国家重点研发计划、国家重大科技专项、教育部、装备部、科工局及军科委等二十多项课题,发表SCI论文150余篇。担任《ES Energy & Environment》主编,《Journal of Physics: Condensed Matter》、《Scientific Reports》、《PLOS One》等6个国际期刊编委。

联系方式:

Tel/Fax:010-62794531; E-mail:caoby@tsinghua.edu.cn; 网站:http://www.heatenergist.org/

教育背景

1994-2001年在山东大学能源与动力工程学院获得学士和硕士学位

2001-2005年在清华大学dafabet黄金手机版获得博士学位

工作履历

2005.07-至今,清华大学dafabet黄金手机版讲师、副教授、教授

2016.06-至今,清华大学dafabet黄金手机版副院长、党委书记

学术兼职

现任中国工程热物理学会传热传质青年委员会主任、中国复合材料学会导热复合材料专业委员会副主任、亚洲热科学与工程联合会执行理事、中国工程热物理学会理事、中国热管理产业技术创新战略联盟理事、中国工程热物理学会传热传质专业委员会委员、中国航空学会燃烧与传热专业委员会委员、中国宇航学会空间能源专业委员会委员、北京2022冬季奥运会专家委员会指导专家。担任《ES Energy & Environment》主编,《Journal of Physics: Condensed Matter》、《Scientific Reports》、《PLOS One》等6个国际期刊编委。国家/北京市/多个省市自然科学基金委、教育部/科技部/工信部/中组部/装发部科研基金和科技奖励、国家发改委、国家能源局等部门专家。

研究领域

微纳尺度流动与传热、热功能材料、先进热管理技术、传热优化理论与节能技术、传热传质过程的计算模拟等

研究概况

主要研究领域为微纳尺度流动与传热、热功能材料、先进热管理技术、传热优化理论与节能技术、传热传质过程的计算模拟等(网站:http://www.heatenergist.org/),主持国家自然科学基金、国家重点研发计划、国家重大科技专项、教育部、装备部、科工局及军科委等二十多项课题,发表SCI论文150余篇。现任中国工程热物理学会传热传质青年委员会主任、中国复合材料学会导热复合材料专业委员会副主任、亚洲热科学与工程联合会执行理事、中国工程热物理学会理事、中国热管理产业技术创新战略联盟理事、中国工程热物理学会传热传质专业委员会委员、中国航空学会燃烧与传热专业委员会委员、中国宇航学会空间能源专业委员会委员、北京2022冬季奥运会专家委员会指导专家。

奖励与荣誉

[1] 2020,国际先进材料学会Fellow

[2] 2019,国际先进材料学会IAAM Medal

[3] 2018,教育部自然科学奖一等奖

[4] 2014,中国工程热物理学会吴仲华优秀青年学者奖

[5] 2011,教育部新世纪优秀人才支持计划

学术成果

发表SCI论文150余篇,代表论文:

[1] D.S. Tang, G.Z. Qin, M. Hu, B.Y. Cao*. Thermal transport properties of GaN with biaxial strain and electron-phonon coupling. Journal of Applied Physics, 2020, 127: 035102

[2] S.N. Li, B.Y. Cao*. Anomalous heat diffusion from fractional Fokker-Planck equation. Applied Mathematics Letters, 2020, 99: 105992

[3] Y.C. Hua, L. Xing, L.Y. Jiao, B.Y. Cao*. An electrical thermometry platform for measuring cross-plane thermal conductivity of 2D flakes on substrate. Applied Physics Letters, 2019, 115: 123102

[4] Y.C. Hua, H.L. Li, B.Y. Cao*. Thermal spreading resistance in ballistic-diffusive regime in GaN HEMTs. IEEE Transactions on Electron Devices, 2019, 66(8): 3296-3301

[5] J.H. Zou, X.T. Xu, B.Y. Cao*. Size-dependent mode contributions to the thermal transport in suspended and supported graphene nanoribbons. Applied Physics Letters, 2019, 115: 123105

[6] Y.B. Liu, W.X. Hong, B.Y. Cao*. Machine learning for thermodynamic properties of pure fluids and their mixtures. Energy, 2019, 188: 116091

[7] Z.T. Zhang, X. Zhao, B.Y. Cao*. Diffusion tensors of arbitrary-shaped nanoparticles in fluid by molecular dynamics simulation. Scientific Reports, 2019, 9: 18943

[8] S.N. Li, B.Y. Cao*. Fractional Boltzmann transport equation for anomalous heat transport and divergent thermal conductivity. International Journal of Heat and Mass Transfer, 2019, 137: 84–89

[9] B.Y. Cao*, J.H. Zou, G.J. Hu, G.X. Cao. Enhanced thermal transport across multilayer graphene and water by interlayer functionalization. Applied Physics Letters, 2018, 112: 041603

[10] H. Bao, J. Chen, X.K. Gu, B.Y. Cao*. A review of simulation methods in micro/nanoscale heat conduction. ES Energy & Environment, 2018, 1: 16-55

[11] Y.C. Hua, B.Y. Cao*. Interface-based two-way tuning of the in-plane thermal transport in nanofilms. Journal of Applied Physics, 2018, 123: 114304

[12] H.L. Li, Y.C. Hua, B.Y. Cao*. A hybrid phonon Monte Carlo-diffusion method for ballistic-diffusive heat conduction in nano- and micro- structures. International Journal of Heat and Mass Transfer, 2018, 127: 1014-1022

[13] B.D. Nie, B.Y. Cao*. Reflection and refraction of a thermal wave at an ideal interface. International Journal of Heat and Mass Transfer, 2018, 116: 314-328

[14] Z.Q. Ye, B.Y. Cao*. Thermal rectification at the bimaterial nanocontact interface. Nanoscale, 2017, 9: 11480-11487

[15] J.H. Zou, B.Y. Cao*. Phonon thermal properties of graphene on h-BN from molecular dynamics simulations. Applied Physics Letters, 2017, 110: 103106

[16] Y.C. Hua, B.Y. Cao*. Slip boundary conditions in ballistic-diffusive heat transport in nanostructures. Nanoscale and Microscale Thermophysical Engineering, 2017, 21(3): 159-176

[17] Y.C. Hua, B.Y. Cao*. Anisotropic heat conduction in two-dimensional periodic silicon nanoporous films. The Journal of Physical Chemistry C, 2017, 121(9): 5293–5301

[18] Y.C. Hua, B.Y. Cao*. Cross-plane heat conduction in nanoporous silicon thin films by phonon Boltzmann transport equation and Monte Carlo simulations. Applied Thermal Engineering, 2017, 111: 1401-1408

[19] D.S. Tang, B.Y. Cao*. Superballistic characteristics of transient phonon ballistic-diffusive conduction. Applied Physics Letters, 2017, 111: 113109

[20] D.S. Tang, B.Y. Cao*. Ballistic thermal wave propagation along nanowires modeled using phonon Monte Carlo simulations. Applied Thermal Engineering, 2017, 117: 609–616

[21] S.N. Li, B.Y. Cao*. Mathematical and information-geometrical entropy for phenomenological Fourier and non-Fourier heat conduction. Physical Review E, 2017, 96(3): 032131

[22] X.M. Yang*, D.P. Yu, B.Y. Cao*. Giant thermal rectification from single-carbon nanotube–graphene junction. ACS Applied Materials & Interfaces, 2017, 9(28): 24078–24084

[23] X.M. Yang*, Y.H. Huang, B.Y. Cao*, A.C. To. Ultrahigh thermal rectification in pillared graphene structure with carbon nanotube-graphene intramolecular junctions. ACS Applied Materials & Interfaces, 2017, 9: 29?35

[24] J.F. Xie, B.Y. Cao*. Fast nanofluidics by travelling surface waves. Microfluidics and Nanofluidics, 2017, 21: 111

[25] B.Y. Cao*, W.J. Yao, Z.Q. Ye. Networked nanoconstrictions: An effective route to tuning the thermal transport properties of graphene. Carbon, 2016, 96: 711-719

[26] B.Y. Cao*, M. Yang, G.J. Hu. Capillary filling dynamics of polymer melts in nanopores: Experiments and rheological modelling. RSC Advances, 2016, 6: 7553-7559

[27] J.H. Zou, Z.Q. Ye, B.Y. Cao*. Phonon thermal properties of graphene from molecular dynamics using different potentials. The Journal of Chemical Physics, 2016, 145: 134705

[28] Z.Q. Ye, B.Y. Cao*. Nanoscale thermal cloaking in graphene by chemical functionalization. Physical Chemistry Chemical Physics, 2016, 18: 32952 - 32961

[29] Y.C. Hua, B.Y. Cao*. The effective thermal conductivity of ballistic–diffusive heat conduction in nanostructures with internal heat source. International Journal of Heat and Mass Transfer, 2016, 92: 995-1003

[30] Y.C. Hua, B.Y. Cao*. Ballistic-diffusive heat conduction in multiply-constrained nanostructures. International Journal of Thermal Sciences, 2016, 101: 126-132

[31] S.N. Li, B.Y. Cao*. Generalized variational principles for heat conduction models based on Laplace transform. International Journal of Heat and Mass Transfer, 2016, 103: 1176–1180

[32] D.S. Tang, Y.C. Hua, B.Y. Cao*. Thermal wave propagation through nanofilms in ballistic-diffusive regime by Monte Carlo simulations. International Journal of Thermal Sciences, 2016, 109: 81-89

[33] D.S. Tang, Y.C. Hua, B.D. Nie, B.Y. Cao*. Phonon wave propagation in ballistic-diffusive regime. Journal of Applied Physics, 2016, 119: 124301

[34] Z.Q. Ye, B.Y. Cao*, W.J. Yao, T.L. Feng, X.L. Ruan*. Spectral phonon thermal properties in graphene nanoribbons. Carbon, 2015, 93: 915-523

[35] R.Y. Dong, B.Y. Cao*. Superhigh-speed unidirectional rotation and its decoupled dynamics of a carbon nanotube in a sheared fluid. RSC Advances, 2015, 5: 88719 - 88724

[36] T.L. Feng, X.L. Ruan, Z.Q. Ye, B.Y. Cao*. Spectral phonon mean free path and thermal conductivity accumulation in defected graphene: The effects of defect type and concentration. Physical Review B, 2015, 91(22): 224301

[37] B.Y. Cao*, R.Y. Dong. Molecular dynamics calculation of rotational diffusion coefficient of a carbon nanotube in fluid. The Journal of Chemical Physics, 2014, 140: 034703

[38] R.Y. Dong, B.Y. Cao*. Anomalous orientations of a rigid carbon nanotube in a sheared fluid. Scientific Reports, 2014, 4: 6120

[39] Z.Q. Ye, B.Y. Cao*, Z.Y. Guo. High and anisotropic thermal conductivity of body-centered tetragonal C4 calculated using molecular dynamics. Carbon, 2014, 66: 567-575

[40] Y.C. Hua, B.Y. Cao*. Phonon ballistic-diffusive heat conduction in silicon nanofilms by Monte Carlo simulations. International Journal of Heat and Mass Transfer, 2014, 78: 755-759

[41] B.Y. Cao*, J. Kong, et al. Polymer nanowire arrays with high thermal conductivity and superhydrophobicity fabricated by a nano-moulding technique. Heat Transfer Engineering, 2013, 34(2-3): 131-139

[42] G.J. Hu, B.Y. Cao*. Thermal resistance between crossed carbon nanotubes: Molecular dynamics simulations and analytical modeling. Journal of Applied Physics, 2013, 114: 224308

[43] B.Y. Cao, J.F. Xie, S.S. Sazhin*. Molecular dynamics study on evaporation and condensation of n-dodecane at liquid-vapour phase equilibria. The Journal of Chemical Physics, 2011, 134(16): 164309

[44] B.Y. Cao*, Y.W. Li, J. Kong, et al. High thermal conductivity of polyethylene nanowire arrays fabricated by an improved nanoporous template wetting technique. Polymer, 2011, 52(8): 1711-1715

[45] B.Y. Cao*, Y.W. Li. A uniform source-and-sink scheme for calculating thermal conductivity by nonequilibrium molecular dynamics. The Journal of Chemical Physics, 2010, 133(2): 024106

[46] B.Y. Cao*, J. Sun, M. Chen, Z.Y. Guo. Molecular momentum transport at fluid-solid interfaces in MEMS/NEMS: A review. International Journal of Molecular Sciences, 2009, 10(11): 4638-4706

[47] Q.W. Hou, B.Y. Cao*, Z.Y. Guo. Thermal gradient induced actuation in double-walled carbon nanotubes. Nanotechnology, 2009, 20(49): 495503

[48] B.Y. Cao, Z.Y. Guo*. Equation of motion of phonon gas and non-Fourier heat conduction. Journal of Applied Physics, 2007, 102(5): 053503

[49] B.Y. Cao*, M. Chen, Z.Y. Guo. Liquid flow in surface-nanostructured channels studied by molecular dynamics simulation. Physical Review E, 2006, 74(6): 066311

[50] B.Y. Cao, M. Chen*, Z.Y. Guo. Temperature dependence of the tangential momentum accommodation coefficient for gases. Applied Physics Letters, 2005, 86(9): 091905