dafabet黄金手机版 - 歡迎您!

职称:教授

电话:62782154

E-mail address:wbing@tsinghua.edu.cn

个人简介

王兵,洪堡学者,博士生导师,工学博士;现任清华大学dafabet黄金手机版副院长,主管科研工作。

1977年2月生于河北唐山;2005年起于清华大学dafabet黄金手机版执教至今,历任讲师、副教授、教授;2009年5月起负责学院学生工作,曾任航院党委研究生工作组组长、航院党委副书记。

联系方式:

电话:010-62782154

邮箱:wbing@tsinghua.edu.cn

教育背景

1996年9月由河北省唐山市第一中学考入清华大学工程力学系学习,2000年7月获工学学士学位,历任热六班班长、力学系学生会副主席;

2000年9月保送直接攻读清华大学工程力学系硕博连读研究生,研究方向为两相流体动力学与湍流燃烧,2005年1月毕业并获工学硕士、博士学位,历任研究生班党支部书记,清华大学研究生会副主席,清华大学研究生团委副书记,清华大学博士生报告团团长等。

工作履历

2005年3月,进入清华大学dafabet黄金手机版工程力学系流体力学研究所工作,2008年5 月,回国后进入清华大学dafabet黄金手机版航空宇航工程系;目前招收航空宇航科学与技术、流体力学两个学科博士研究生。

2006年10月-2008年4月,获得德国洪堡(Alexander von Humboldt)奖学金,在德国慕尼黑工业大学流体动力学研究组访问研究;后多次赴德国慕尼黑工业大学、德国亚琛工业大学、法国图卢兹流体力学研究所、波兰华沙理工大学等研究机构进行短期访学。

教学情况:

热爱教育教学事业,心系学生,培养航空宇航、力学等专业人才;曾荣获首都暑期社会实践先进工作者(2019)、清华大学先进工作者(2019)、北京市高等教育教学成果奖一等奖(2018)、清华大学教学成果一等奖(2016)、清华大学青年教师教学优秀奖(2015)、清华大学优秀共产党员(2015)等,还曾荣获北京高校优秀德育工作者(2014)、清华大学林枫辅导员奖(2011)等。

承担教学课程如下:

《推进原理与热流体基础》64学时(本科生)

《航空宇航工程全过程设计》32学时(本科生)

《发动机结构与系统设计》48学时(本科生,合讲)

《航空宇航推进理论》64学时(研究生)

《航空宇航推进的数值方法》48学时(研究生)

《两相流体动力学》 32学时(研究生)

《计算传热学》48学时(研究生,合讲)

学术兼职

担任美国AIAA增压燃烧技术委员会委员(2019-)、VI区委员会委员(2020-);国际燃烧与能源利用大会(ICCEU)国际组织委员会委员(2019-2022);第五届全国青年燃烧会议组委会委员(2019);第27届国际爆炸与反应系统动力学会议(ICDERS)组委会委员(2019);第九届国际爆震推进研讨会(IWDP)大会主席(2018);中国力学学会激波与激波管专业委员会委员(2020-)、环境力学专业委员会委员(2015-2020);中国工程热物理学会多相流分会副会长(2020-)、爆震与新型推进专业委员会委员(2017-2022);国际燃烧不稳定性大会科学委员会委员(2017);第十一届工业爆炸与安全防护国际学术会议组委会副主席(2017)。

国家节能中心专家(2010年起)、教育部留学基金委评审专家(2012年起)、国家自然科学基金评审专家、浙江省自然科学基金评审专家、河北省自然科学基金评审专家、黑龙江省自然科学基金评审专家、黑龙江科技奖、河北科技奖、安徽省科技奖、山东省科技奖等评审专家。

《AIAA Journal》特邀编委,《Aerospace Science and Technology》副主编,《Journal of Engineering》主编,《Chinese Journal of Aeronautics》青年编委,《航空学报》、《推进技术》、《火箭推进》、《兵器装备工程学报》、《气体物理》、《清华大学学报》等期刊编委。

担任《Journal of Fluid Mechanics》、《Physics of Fluids》、《Physics Fluids Review》、《Acta Astronautica》、《AIAA Journal》、《International Journal of Heat and Mass Transfer》、《Numerical Heat Transfer》、《Experimental Heat and Fluids》、《Applied Physics Letter》、《Shock Wave》、《ASME-Journal of Fluid Engineering》、《Journal of Aerospace Engineering》、《International Journal of Hydrogen Energy》等多个国际期刊和《推进技术》、《力学进展》、《航空学报》、《航空动力学报》等国内期刊审稿人。

研究概况

清华大学dafabet黄金手机版航空宇航工程系喷雾燃烧与推进实验室负责人,主要研究方向为极端条件两相流与反应流,研究概况如下:

航空宇航前沿基础科学问题,包括先进发动机极端条件下湍流两相流动、瞬变及反应过程机理、规律与控制机制(国家自然科学基金、国家重大工程项目等资助);

流动与燃烧不稳定性,包括可压缩流体的R-M不稳定性、液体火箭发动机高压燃烧不稳定性、超燃冲压发动机超声速燃烧不稳定性、固体火箭发动机燃烧本质不稳定性、航空燃气涡轮发动机贫燃预混燃烧不稳定性、旋转爆震发动机爆震燃烧不稳定性等(国家自然科学基金、国家重大工程项目等资助);

航空宇航先进数值模拟方法及其工程应用,包括大涡模拟,直接模拟,现代数值格式,混合LES/RANS模拟,无网格方法(SPH),高性能计算等(科技部重点研发计划、国家重大工程项目等资助);

新概念推进及组合发动机总体与数字化集成设计,包括数字发动机、数字孪生系统等(工程单位课题资助);

能源与环境基础科学问题,包括空化及多物理作用机理与规律、颗粒污染物弥散与控制等(国家自然科学基金资助)。

本实验室招收致力于从事“中国心”(包括“航天心”和“航空心”)的研究生,开展下一代爆震发动机、新概念组合推进与空天动力等相关基础前沿与关键技术研究工作。热烈欢迎清华本校、国内“双一流”等兄弟院校、国外知名大学的优秀学生加盟本实验室。实验室将为研究生(包括博士生、工学硕士、工程硕士)提供广阔的研究平台,充足的生活补助,赴国外著名大学(包括美国、德国、英国、法国、韩国、日本、新加坡、新西兰等)交流研究的机会和精彩的研究生生活。本实验室长期招聘博士后。

实验室已毕业研究生目前主要去向有:西北工业大学、中山大学、北京理工大学等,中国航天一院、三院、五院、六院、八院等京沪地区航天核心单位,航空主机所,中国兵器集团核心研究所,国家电网以及五大发电集团核心研究部门等央企核心部门,国外著名大学与科研机构研究人员或博士后,世界五百强外资企业在京沪地区重要研发部门(包括通用电气、斯伦贝谢、爱立信等)。

拟招生人数:博士生1-2人/年,硕士生1-2人/年,博士后工作人员名额不限。欢迎有力学、能源动力、航天航空、船舶与海洋等相关工科背景的同学加入本实验室。

奖励与荣誉

北京市科学技术进步二等奖(2021,排名1

中国发明协会发明创新奖一等奖(2020,排名1

中国产学研合作促进会创新促进奖(2018,个人)

北京市教育教学成果奖一等奖(2018

德国纽伦堡国际发明展发明金奖(2次)、日内瓦国际发明展银奖(1次)、美国硅谷国际发明展金奖(1次)等

德国洪堡学者

AIAA副会士(2020

德国慕尼黑工业大学TUM-大使Ambassador2019

ASME高级会员

APS-流体分会高级会员

学术成果

A. 强可压气液两相流模型、算法及物理机理

吴汪霞; 王兵; 王晓亮; 刘青泉; 2021. 非等强度多道冲击波作用下空泡溃灭机制分析, 航空学报, 40 (12): 625894-625894. http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2021.25894

Gao, Z.; Wu, W.; Wang, B.*; 2021. The effects of nanoscale nuclei on cavitation, Journal of Fluid Mechanics, 911, A20. https://doi.org/10.1017/jfm.2020.1049

Gao, Z.;Wu, W.; Sun, W.; Wang, B.*; 2021. Understanding the stabilization of a bulk nanobubble: a molecular dynamics analysis, Langmuir, 37(38), 11281-11291. https://doi.org/10.1021/acs.langmuir.1c01796(封面文章)

Wu, W.; Liu, Q.; Wang, B.; 2021. The effects of nanoscale nuclei on cavitation, 25th International Congress of Theoretical and Applied Mechanics - ICTAM, 2020+1, Milan, Italy, on August 22-27, 2021.

Wu, W.; Liu, Q.; Wang, B.*; 2021. Curved surface effect on high-speed droplet impingement, Journal of Fluid Mechanics, 909, A7. https://doi.org/10.1017/jfm.2020.926

Wu, W.; Wang, B.; Liu, Q.*; 2021. Tandem cavity collapse in a high-speed droplet impinging on a 180◦ constrained wall, Journal of Fluid Mechanics, 932, A52. https://doi.org/10.1017/jfm.2021.1044.

Xiang, G.; Ren, Z.; Kim, S.; Wang, B.*; 2020. Numerical analysis on the disintegration of gas-liquid interface in two-phase shear-layer flows, Aerospace Science and Technology, 98, 105710. https://doi.org/10.1016/j.ast.2020.105710

Wu, W.; Wang, B.*; Xiang, G.; 2019. Impingement of high-speed cylindrical droplets embedded with an air/vapour cavity on a rigid wall: numerical analysis, Journal of Fluid Mechanics, 864, 1058–1087. https://doi.org/10.1017/jfm.2019.55

Xiang, G.; Wang, B.*; 2019. Theoretical and numerical studies on shock reflection at water/air two-phase interface: fast-slow case, International Journal of Multiphase Flow, 114, 219–228. https://doi.org/10.1016/j.ijmultiphaseflow.2019.03.002

Zhang, C.; Xiang, G.M.; Wang, B.; Hu, X.Y.*; Adams, N.A.; 2019. A weakly compressible SPH method with WENO reconstruction, Journal of Computational Physics, 392, 1–18. https://doi.org/10.1016/j.jcp.2019.04.038

Herty, M.; Müller, S.*; Gerhard, N.; Xiang, G.; Wang, B.; 2018. Fluid-structure coupling of linear elastic model with compressible flow models, International Journal for Numerical Methods in Fluids, 86, 365–391. https://doi.org/10.1002/fld.4422

Wang, B.; Xiang, G.; Hu, X.Y.*; 2018. An incremental-stencil WENO reconstruction for simulation of compressible two-phase flows, International Journal of Multiphase Flow, 104, 20–31. https://doi.org/10.1016/j.ijmultiphaseflow.2018.03.013

Wu, W.; Xiang, G.; Wang, B.*; 2018. On high-speed impingement of cylindrical droplets upon solid wall considering cavitation effects, Journal of Fluid Mechanics, 857, 851–877. https://doi.org/10.1017/jfm.2018.753

Xiang, G.; Wang, B.*; 2018. Numerical investigation on the interaction of planar shock wave with an initial ellipsoidal bubble in liquid medium, AIP Advances, 8, 075128. https://doi.org/10.1063/1.5047570(编辑精选)

Xiang, G.; Wang, B.*; 2017. Numerical study of a planar shock interacting with a cylindrical water column embedded with an air cavity, Journal of Fluid Mechanics, 825, 825–852. https://doi.org/10.1017/jfm.2017.403

Zhang, P.; Wang, B.*; 2017. Effects of elevated ambient pressure on the disintegration of impinged sheets, Physics of Fluids, 29, 042102. https://doi.org/10.1063/1.4981777

Hu, X.Y.*; Wang, B.; Adams, N.A.; 2015. An efficient low-dissipation hybrid weighted essentially non-oscillatory scheme, Journal of Computational Physics, 301, 415–424. https://doi.org/10.1016/j.jcp.2015.08.043

B.强可压缩反应流物理机制及动力学规律

Chen, Q.*; Wang B.*; 2021. The spatial growth of supersonic reacting mixing layers: Effects of combustion mode, Aerospace Science and Technology, 116, 106888. https://doi.org/10.1016/j.ast.2021.106888.

Shahsavari, M.; Wang, B.*; Zhang, B.; Jiang, G.; Zhao, D.; 2021. Response of supercritical round jets to various excitation modes, Journal of Fluid Mechanics, 915, A47. https://doi.org/10.1017/jfm.2021.78

Ren, Z.; Wang, B.*; Xiang, G.; Zhao, D.; Zheng, L.; 2019. Supersonic spray combustion subject to scramjets: progress and challenges, Progress in Aerospace Sciences, 105, 40–59. https://doi.org/10.1016/j.paerosci.2018.12.002

Ren, Z.; Wang, B.*; Zhang, F.; Zheng, L.; 2019. Effects of eddy shocklets on the segregation and evaporation of droplets in highly compressible shear layers, AIP Advances, 9, 125101. https://doi.org/10.1063/1.5125121

Ren, Z.; Wang, B.*; Hu, B.; Zheng, L.; 2018. Numerical analysis of supersonic flows over an aft-ramped open-mode cavity, Aerospace Science and Technology, 78, 427–437. https://doi.org/10.1016/j.ast.2018.05.003

Ren, Z.; Wang, B.*; Zhao, D.; Zheng, L.; 2018. Flame propagation involved in vortices of supersonic mixing layers laden with droplets: Effects of ambient pressure and spray equivalence ratio, Physics of Fluids, 30, 106107. https://doi.org/10.1063/1.5049840

Ren, Z.; Wang, B.*; Zheng, L.; 2018. Numerical analysis on interactions of vortex, shock wave, and exothermal reaction in a supersonic planar shear layer laden with droplets, Physics of Fluids, 30, 036101. https://doi.org/10.1063/1.5011708 (特色文章)

Ren, Z.; Wang, B.*; Zheng, L.; Zhao, D.; 2018. Numerical studies on supersonic spray combustion in high-temperature shear flows in a scramjet combustor, Chinese Journal of Aeronautics, 31, 1870–1879. https://doi.org/10.1016/j.cja.2018.06.020

Ren, Z.; Wang, B.*; Xie, Q.; Wang, D.; 2017. Thermal auto-ignition in high-speed droplet-laden mixing layers, Fuel, 191, 176–189. https://doi.org/10.1016/j.fuel.2016.11.073

Ren, Z.; Wang, B.*; Yang, S.; Xie, Q.; Liu, H.; Wang, D.; 2017. Evolution of flame kernel in one eddy turnover of high-speed droplet laden shear layers, Journal of Loss Prevention in the Process Industries, 49, 938–946. https://doi.org/10.1016/j.jlp.2017.05.009

Wang, B.*; Wei, W.; Zhang, Y.; Zhang, H.; Xue, S.; 2015. Passive scalar mixing in Mc <1 planar shear layer flows, Computers & Fluids, 123, 32–43. https://doi.org/10.1016/j.compfluid.2015.09.006

Zhang, Y.; Wang, B.*; Zhang, H.; Xue, S.; 2015. Mixing enhancement of compressible planar mixing layer impinged by oblique shock waves, Journal of Propulsion and Power, 31, 156–169. https://doi.org/10.2514/1.B35423

C.连续旋转爆震与斜爆震

师迎晨; 张任帅; 计自飞; 王兵; 2022. 高速飞行器的连续旋转爆震推进技术, 空气动力学学报, 40(01): 101-113.

Ji, Z.; Zhang, B.; Zhang, H.; Wang, B.*; Wang, C.; 2022. Reduction of feedback pressure perturbation for rotating detonation combustors, Aerospace Science and Technology, 126, 1070635. https://doi.org/10.1016/j.ast.2022.107635.

Zhang, B.; Chen, J.; Shahsavari, M.; Wen, H.; Wang, B.*; Tian, X.*; 2022. Effects of Inert Dispersed Particles on the Propagation Characteristics of a H2/Co/Air Detonation Wave, Aerospace Science and Technology, 126, 107660. https://doi.org/10.1016/j.ast.2022.107660.

王兵, 谢峤峰, 闻浩诚, 滕宏辉, 张义宁 周林 2021. 爆震发动机研究进展, 推进技术, 42(04): 721-737+716.

Ji, Z.; Zhang, H.; Wang, B.*; 2021. Thermodynamic performance analysis of the rotating detonative airbreathing combined cycle engine, Aerospace Science and Technology 113, 106694. https://doi.org/10.1016/j.ast.2021.106694.

Ren, Z.; Wang, B.*; Zheng, L.; 2021. Wedge-induced oblique detonation waves in supersonic kerosene-air premixing flows with oscillating pressure, Aerospace Science and Technology, 110. https://doi.org/10.1016/j.ast.2020.106472

Ji, Z.; Duan, R.; Zhang, R.; Zhang, H.; Wang, B.*; 2020. Comprehensive performance analysis for the rotating detonation-based turboshaft engine, International Journal of Aerospace Engineering, 9587813. https://doi.org/10.1155/2020/9587813

Ji, Z.; Zhang, H.; Wang, B.*; He, W.; 2020. Comprehensive performance analysis of the turbofan with a multi-annular rotating detonation duct burner, Journal of Engineering for Gas Turbines and Power-Transactions 142(2), 021007. https://doi.org/10.1115/1.4045518

Ma, J.; Luan, M.; Xia, Z..; Wang, J.*; Zhang, S.; Yao, S.; Wang, B.; 2020. Recent progress, development trends, and consideration of continuous detonation engines, AIAA Journal, 58(12), 4976-5035. https://doi.org/10.2514/1.J058157

Ren, Z.; Wang, B.*; 2020. Numerical study on stabilization of wedge-induced oblique detonation waves in premixing kerosene-air mixtures, Aerospace Science and Technology, 107, 106245. https://doi.org/10.1016/j.ast.2020.106245

Wang, B.; Wang, J.; 2020. Introduction to the special section on recent progress on rotating detonation and its application, AIAA Journal, 58(12), 4974-4975. https://doi.org/10.2514/1.J060144

Wen, H.; Wang, B.*; 2020. Experimental study of perforated-wall rotating detonation combustors, Combustion and Flame, 213, 52-62. https://doi.org/10.1016/j.combustflame.2019.11.028

He, W.; Xie, Q.; Ji, Z.; Rao, Z.; Wang, B.*; 2019. Characterizing continuously rotating detonation via nonlinear time series analysis, Proceedings of the Combustion Institute, 37, 3433–3442. https://doi.org/10.1016/j.proci.2018.07.045

Ji, Z.; Zhang, H.; Wang, B.*; 2019. Performance analysis of dual-duct rotating detonation aero-turbine engine, Aerospace Science and Technology, 92, 806–819. https://doi.org/10.1016/j.ast.2019.07.011

Ren, Z.; Wang, B.*; Xiang, G.; Zheng, L.; 2019. Numerical analysis of wedge-induced oblique detonations in two-phase kerosene–air mixtures, Proceedings of the Combustion Institute, 37, 3627–3635. https://doi.org/10.1016/j.proci.2018.08.038

Wen, H.; Xie, Q.; Wang, B.*; 2019. Propagation behaviors of rotating detonation in an obround combustor, Combustion and Flame, 210, 389–398. https://doi.org/10.1016/j.combustflame.2019.09.008

Xie, Q.; Wang, B.*; Wen, H.; He, W.; 2019. Thermoacoustic instabilities in an annular rotating detonation combustor under off-design condition, Journal of Propulsion and Power, 35, 141–151. https://doi.org/10.2514/1.B37044

Xie, Q.; Wang, B.*; Wen, H.; He, W.; Wolanski, P.; 2019. Enhancement of continuously rotating detonation in hydrogen and oxygen-enriched air, Proceedings of the Combustion Institute, 37, 3425–3432. https://doi.org/10.1016/j.proci.2018.08.046

Ren, Z.; Wang, B.*; Xiang, G.; Zheng, L.; 2018. Effect of the multiphase composition in a premixed fuel–air stream on wedge-induced oblique detonation stabilisation, Journal of Fluid Mechanics, 846, 411–427. https://doi.org/10.1017/jfm.2018.289

Xie, Q.; Wen, H.; Li, W.; Ji, Z.; Wang, B.*; Wolanski, P.; 2018. Analysis of operating diagram for H2/Air rotating detonation combustors under lean fuel condition, Energy, 151, 408–419. https://doi.org/10.1016/j.energy.2018.03.062

Zheng, D.; Wang, B.*; 2018. Utilization of nonthermal plasma in pulse detonation engine ignition, Journal of Propulsion and Power, 34, 539–549. https://doi.org/10.2514/1.B36591

D.燃烧不稳定性机制、模型及调控

Li, W.; Zhao, D.*; Chen,X.; Sun, Y.; Ni, S.; Guan, D.;Wang, B.; 2021. Numerical investigations on solid-fueled ramjet inlet thermodynamic properties effects on generating self-sustained combustion instability, Aerospace Science and Technology, 119, 107097. https://doi.org/10.1016/j.ast.2021.107097.

Rao, Z.; Li, R.; Zhang, B.; Wang, B.*; Zhao, D.; Akhtar, M.S.; 2021. Experimental investigations of equivalence ratio effect on nonlinear dynamics features in premixed swirl-stabilized combustor, Aerospace Science and Technology, 112,106601. https://doi.org/10.1016/j.ast.2021.106601

Rao, Z.; Li, R.; Zhang, B.; Wang, B.*; Zhao, D.; Shahsavari, M.; 2021. Nonlinear dynamics of a swirl-stabilized combustor under acoustic excitations: influence of the excited combustor natural mode oscillations, Flow, Turbulence and Combustion, 107, 683-708. https://doi.org/10.1007/s10494-021-00249-y

Shahsavari, M.*; Farshchi, M.; Arabnejad, M.H.; Wang, B.; 2021. The role of flame–flow interactions on lean premixed lifted flame stabilization in a low swirl flow, Combustion Science and Technology, 1-26. https://doi.org/10.1080/00102202.2021.1976766

Zhang, B.;Shahsavar, M.; Rao, Z.; Yang, S.; Wang, B.*; 2021. Thermoacoustic Instability Drivers and Mode Transitions in a Lean Premixed Methane-Air Combustor at Various Swirl Intensities, Proceedings of the Combustion Institute, 38(4): 6115-6124. https://doi.org/10.1016/j.proci.2020.06.226.

Ji, S.; Wang, B.*; Zhao, D.; 2020. Numerical analysis on combustion instabilities in end-burning-grain solid rocket motors utilizing pressure-coupled response functions, Aerospace Science and Technology, 98, 105701. https://doi.org/10.1016/j.ast.2020.105701

Qin, J.; Zhou, L.; Zhang, H.*; Wang, B.; 2020. Numerical evaluation of acoustic characteristics of a thrust chamber with quarter-wave resonators, Science China-Technological Sciences, 64, 375-386. https://doi.org/10.1007/s11431-019-1575-6

Sun, Y.; Rao, Z.; Zhao, D.*; Wang, B.; Sun, D.; Sun, X.; 2020. Characterizing nonlinear dynamic features of self-sustained thermoacoustic oscillations in a premixed swirling combustor, Applied Energy, 264, 114698. https://doi.org/10.1016/j.apenergy.2020.114698

Zhang, B.; Shahsavari, M.; Rao, Z.; Li, R.; Yang, S.; Wang, B.*; 2020. Effects of the fresh mixture temperature on thermoacoustic instabilities in a lean premixed swirl-stabilized combustor, Physics of Fluids, 32, 047101. https://doi.org/10.1063/1.5133859

Ji, S.; Wang, B.*; 2019. Modeling and analysis of triggering pulse to thermoacoustic instability in an end-burning-grain model solid rocket motor, Aerospace Science and Technology, 95, 105409. https://doi.org/10.1016/j.ast.2019.105409

Shahsavari, M.*; Farshchi, M.; Chakravarthy, S.R.; Chakraborty, A.; Aravind, I.B.; Wang, B.; 2019. Low swirl premixed methane-air flame dynamics under acoustic excitations, Physics of Fluids, 31, 095106. https://doi.org/10.1063/1.5118826 (编辑精选)

Zhang, B.; Shahsavari, M.; Rao, Z.; Yang, S.; Wang, B.; 2019. Contributions of hydrodynamic features of a swirling flow to thermoacoustic instabilities in a lean premixed swirl stabilized combustor, Physics of Fluids, 31, 075106. https://doi.org/10.1063/1.5108856 (编辑精选)

Qin, J.; Zhang, H.; Wang, B.*; 2018. Numerical evaluation of acoustic characteristics and their damping of a thrust chamber using a constant-volume bomb model, Chinese Journal of Aeronautics, 31, 470–480. https://doi.org/10.1016/j.cja.2018.01.007

Qian, C.; Bing, W.*; Huiqiang, Z.; Yunlong, Z.; Wei, G.; 2016. Numerical investigation of H2/air combustion instability driven by large scale vortex in supersonic mixing layers, International Journal of Hydrogen Energy, 41, 3171–3184. https://doi.org/10.1016/j.ijhydene.2015.11.029

E.其他

Cai, T.; Backer, S.M.; Cao, F.; Wang, B.; Tang, A.; Fu, J.; Han, L.; Sun, Y.; Zhao, D.*; 2021. NOx emission performance assessment on a perforated plate-implemented premixed ammonia-oxygen micro-combustion system, Chemical Engineering Journal, 417, 128033. https://doi.org/10.1016/j.cej.2020.128033.

Cai, T.; Zhao, D.*; Sun, Y.; Ni, S.; Li, W.; Guan, D.; Wang, B.; 2021. Evaluation of NOx emissions characteristics in a CO2-Free micro-power system by implementing a perforated plate, Renewable and Sustainable Energy Reviews, 145, 111150. https://doi.org/10.1016/j.rser.2021.111150.

Chen, Z.; Huang, F.; Jin, X.*; Cheng,X.; and Wang, B.; 2021. A novel lightweight aerodynamic design for the wings of hypersonic vehicles cruising in the upper atmosphere, Aerospace Science and Technology, 109, 106418. https://doi.org/10.1016/j.ast.2020.106418.

Jin, X.*; Huang, F.; Miao, W.; Cheng, X.; Wang, B.*; 2021. Effects of the boundary-layer thickness at the cavity entrance on rarefied hypersonic flows over a rectangular cavity, Physics of Fluids, 33,036116. https://doi.org/10.1063/5.0045056

Jin, X.*; Wang, B.; Cheng, X.; Wang, Q.; Huang, F.; 2021. Effects of corner rounding on aerothermodynamic properties in rarefied hypersonic flows over an open cavity, Aerospace Science and Technology, 110,106498. https://doi.org/10.1016/j.ast.2021.106498

Um, K.; Hu, X.; Wang, B.; Thuerey, N.; 2021. Spot the Difference: Accuracy of numerical simulations via the human visual system, ACM Transactions on Applied Perception, 18(2), 6:1-6:15. https://doi.org/10.1145/3449064

Sun, Y.; Cai, T.; Shahsavari, M.; Sun,D.; Sun, X.; Zhao, D.*; Wang, B.; 2021. RANS simulations on combustion and emission characteristics of a premixed NH3/H2 swirling flame with reduced chemical kinetic model, Chinese Journal of Aeronautics, 34(12): 17-27. https://doi.org/10.1016/j.cja.2020.11.017.

Cai, T.; Zhao, D.*; Wang,B.; Li,J.; Guan, Y.; 2020. NOx emission and thermal performances studies on premixed ammonia-oxygen combustion in a CO2-free micro-planar combustor, Fuel, 280, 118554. https://doi.org/10.1016/j.fuel.2020.118554

Jin, X.*; Wang, B.; Cheng, X.; Wang, Q.; Huang, F.; 2020. The effects of Maxwellian accommodation coefficient and free-stream Knudsen number on rarefied hypersonic cavity flows, Aerospace Science and Technology, 97, 105577. https://doi.org/10.1016/j.ast.2019.105577

Jin, X.; Huang, F.; Cheng, X.; Wang, Q.; Wang, B.*; 2019. Monte Carlo simulation for aerodynamic coefficients of satellites in low-earth orbit, Acta Astronautica, 160, 222–229. https://doi.org/10.1016/j.actaastro.2019.04.012

Rao, Z.; Luo, Y.; Wang, B.*; Xie, Q.; He, W.; 2019. Mitigation of H2/air gaseous detonation via utilization of PAN-based carbon fibre felt, International Journal of Hydrogen Energy, 44, 5054–5062. https://doi.org/10.1016/j.ijhydene.2018.12.196